Balance or CG

- Background on CG checks:
 - "A nose-heavy plane flies poorly. A tail-heavy plane flies once". So we balance a new model at a conservative nose-heavy point (usually at about 25% of MAC). This is often what plans or instructions suggest too. This is a reasonable starting point but should <u>NEVER</u> be the final balance point. It flies. But remember <u>it flies poorly</u>.
 - In flight a nose-heavy condition causes a pitch forward, so we must compensate with something usually up trim or incidence compensation. Now the plane flies straight at cruise. But it flies poorly.
- Dynamic CG checks:
 - \circ The 45° dive check. I have found this to be the most reliable for most planes.
 - Take the plane high. No, really high. Now do another lap and climb some more.
 - Aim into the wind if at all possible and cut the throttle to idle.
 - When speed has significantly decreased but before a stall, push the elevator to a 45° dive.
 <u>Release</u> elevator (take fingers off sticks!)
 - Observe the dive but remember to pull out in time!
 - Nose heavy: As the speed increases, any up-trim that was set to compensate for the "nose-heavy" will cause the aircraft to pull out of the dive.
 - Neutral: The 45° dive will be maintained.
 - Slightly tail heavy: The dive will get steeper.
 - If the aircraft was a lot tail-heavy, its 1st & only flight would have ended long before this!
 - I prefer a very slight pull-out. (very slight nose-heavy) and I will repeat this check a couple of time just make sure of my observations.
 - \circ The 45° Bank check.
 - At cruise speed, roll the plane to a 45° bank and let go the sticks.
 - Observe the attitude of the aircraft.
 - Nose heavy: The nose will drop more than the tail.
 - Neutral: The whole aircraft will drop. Nose as much as tail.
 - Slightly tail heavy: The tail will drop more than the nose.
 - Note that because there is less lifting surface at a 45° bank angle the plane will be expected to lose altitude. We are looking to see if it goes nose down or tail down.
 - Inverted flight check.
 - Once the aircraft can fly hands off in normal flight, roll to inverted at the same throttle setting, release the sticks and observe the aircraft.
 - Nose heavy: nose drops and it goes into a dive
 - Neutral: no pitch change
 - Slightly tail heavy: nose lifts and goes into a climb
 - What does nose-heavy result in? Or what does "flies poorly" mean?
 - Take-off (lift –off) distance is increased.
 - During landing flair, the plane suddenly drops out of the air.
 - The aircraft noses over easily during touch-down and taxiing.
 - The aircraft has a higher stall speed and a more sudden stall.
 - Axial rolls are more difficult to perform.
 - Nose drops a lot during intended level turns.

Aerobatics

- <u>Always</u> start with wings level
- Inside Loop
 - From level, pull elevator
 - Maintain <u>round</u> loop, by
 - full throttle on the first half
 - Reduce amount of elevator over the top
 - ¼ throttle on second half
 - Exit at same altitude as entry
 - Now try looping with less than full elevator.
- Outside Loop (2 ways to do this)
 - 1. From Top
 - From very high level, reduce throttle to 1/4
 - o Push elevator
 - Just before fully inverted, full throttle until level again at the top.
 - 2. From bottom
 - Enter inverted, push elevator
 - Maintain round outside loop by
 - full throttle on the first half
 - Reduce amount of elevator over the top
 - ¼ throttle on second half
- Roll
 - Start with simple roll (military roll):
 - Begin with <u>wings level</u> and pull to about 20° up and <u>release elevator</u>
 - Apply aileron (your choice of direction)
 - With no elevator or rudder correction, aircraft will exit at about 20° down.
 - Add elevator correction:
 - Begin with wings level and pull to about 20° up and <u>release elevator</u>
 - Apply aileron (your choice of direction)
 - As aircraft passes through inverted, apply some "push" elevator.
 - With appropriate elevator correction, aircraft will exit between level and 20° up.
 - Add rudder correction:
 - Begin with wings level and pull to about 20° up and <u>release elevator</u>
 - Apply aileron (your choice of direction)
 - As aircraft passes through 1st knife edge, apply some rudder opposite to the aileron direction. Then release rudder.
 - As aircraft passes through 2st knife edge, apply some rudder in same direction as the aileron direction. Then release rudder.
 - With appropriate rudder correction, aircraft will exit between level and 20° up.
 - Now combine elevator and rudder correction for an axial roll. Then try a slow axial roll (same inputs but slow the roll rate)
- Split S (Starts high and ends low, so plan ahead!)
 - From high level flight, half roll until aircraft is inverted. Release aileron.
 - Cut throttle
 - Pull elevator to perform half inside loop.

- Immelmann. Also called Immelmann Turn. (Starts low and ends high)
 - o From level flight and full throttle, pull elevator to do half loop. Release elevator when inverted.
 - Half roll either way to upright.
- Cuban 8
 - \circ $\;$ From level flight pull elevator for just more than a half loop.
 - \circ $\;$ When aiming back down at about 45°, cut throttle and half roll. Release aileron
 - Pull elevator and open throttle for just more than a half loop again.
 - When aiming back down at about 45°, cut throttle and half roll. Release aileron
 - Pull elevator to level off.
- Reverse Cuban 8
 - From level flight & full throttle, pull elevator to climb at a 45° angle up. Release elevator
 - Half roll. Release aileron.
 - Pull elevator for just more than half a loop. Cut to ¼ throttle soon after inverted.
 - \circ When aiming at 45° up again, open throttle, release elevator.
 - Half roll. Release aileron.
 - Pull elevator for just more than half a loop, going to ¼ throttle soon after inverted. Release elevator at level flight.
- Stall Turn (Hammerhead)
 - This is a great one to exercise rudder use*
 - From level flight, <u>wings level</u> and full throttle, pull elevator until aircraft is going straight up.
 - If needed, correct with rudder to keep a straight up-line.
 - Once up-line is established, cut throttle to ¼. (not idle)
 - Just as upward motion stops (or an eye-blink before), apply full rudder.
 - Aircraft should yaw within a wing-span to vertically down.
 - o Establish down-line
 - Pull elevator until level flight.
 - * As a variation; to practice the use of the rudder, "wag" the aircraft tail on the up line, but make sure the up-line does not drift to the right or left.

Flap Use:

- Flaps increase lift and INCREASE drag.
- Flaps induce wash-out \rightarrow better roll control at low flight speed.
- Flaps permit steeper approach angles.
- Using flaps is cool!